Stars: 1385
Forks: 517
Pull Requests: 50
Issues: 24
Watchers: 79
Last Updated: 2021-08-04 05:29:14
🍭🍭uniting the internal work in a way that is in PHP
License: MIT License
Languages: PHP
每周最少一更,求出题,求虐待 At least once a week, ask for problems and abuse
├──Package
│ ├── Sort 排序篇
│ │ ├── BubbleSort.php 冒泡排序
│ │ ├── HeapSort.php 堆排序 大根堆
│ │ ├── MBaseSort.php 基数排序 MSD
│ │ ├── LBaseSort.php 基数排序 LSD
│ │ ├── QuickSort.php 快速排序
│ │ ├── ShuttleSort.php 飞梭排序
│ │ ├── ShellSort.php 希尔排序
│ │ ├── MergeSort.php 归并排序
│ │ ├── InsertSort.php 插入排序
│ │ └── SelectSort.php 选择排序
│ │
│ ├── Query 查找篇
│ │ ├── BinaryQuery.php 二分查找
│ │ ├── InseertQuery.php 插入查找
│ │ ├── FibonacciQuery.php 斐波那契查找
│ │ ├── BFSQuery.php 广度优先查找
│ ├── Kmp.php 算法导论-KMP算法
│ ├── DijkstraQuery.php 迪克斯特拉算法
│ │ └── QulickQuery.php 快速查找
│ │
│ ├── Structure 数据结构
│ │ ├── StackExample.php 堆栈 先进后出 LIFO (Last In First Out)
│ │ ├── LinearChain.php 线性表 单链存储
│ │ └── LinearOrder.php 线性表 顺序存储
│ │ └── BinarySearchTree.php 二叉搜索树
│ │
│ ├── Tools 小工具集
│ │ └── SystemSwitch.php 堆栈实现进制转换
│ │
│ └── Other 其他
│ ├── MonkeyKing.php 约瑟夫环
│ ├── DynamicProgramming.php 动态规划
│ ├── Fibonacci.php 斐波那契数列
│ ├── StealingApples.php 偷苹果求余
│ ├── HanoiGames.php 汉诺塔游戏
│ ├── BidirectionalQueue.php 双向队列
│ ├── ColorBricks.php 彩色砖块
│ ├── GetCattle.php 牛年求牛
│ ├── OnlyNumbers.php 求唯一数
│ ├── PokerGames.php 洗扑克牌
│ ├── Interval.php 抽奖区间算法
│ ├── Maze.php 迷宫寻址算法
│ ├── AntsClimb.php 蚂蚁爬杆算法
│ ├── Encryption.php 对称加密算法
│ ├── ElevatorDispatch.php 编程之美-电梯调度算法
│ ├── PointInTriangle.php 向量叉集计算点是否在三角形中
│ ├── TraversalOfBinary.php 二叉树非递归遍历算法实现
│ ├── Knapsack.php 贪心算法之背包问题实现
│ └── BigSmallReplace.php Hello World 输出 Olleh Dlrow
│ └── Solution.php Facebook面试题之岛屿周长算法
│ └── RotationSort.php Facebook面试题之顺时针回旋算法
│ └── Square.php Facebook面试题之判断四个点能否组成正方形算法
│ └── Prim.php Prim算法(最小生成树算法)
│ └── CartesianProduct.php 笛卡尔积算法
│ └── Square.php 面试题之平面任意四点能否组成一个矩形
│ └── Judge.php 面试题之扑克牌中任选五张判断是不是顺子
│ └── Factorial.php 面试题之N的阶乘末尾有多少个0
| └── HashTable.php HashTable
| └── RotateSort.php 面试题之风车旋转排序算法
│
├──LICENSE
└──README.md
记录自己理解算法,数据结构的过程,尽可能的简单全面以及详细,让算法学习运用灵活自如,加油(ง •̀_•́)ง
用 PHP 实现算法并替代官方提供的函数是愚蠢的事情 .但这决不代表斟酌算法就是件无意义的事 , 每个算法都是一种思想的结晶 , 学习优秀的思想 , 开拓思维
直白地说,算法就是任何明确定义的计算过程,它接收一些值或集合作为输入,并产生一些值或集合作为输出。这样,算法就是将输入转换为输出的一系列计算过程。来源:Thomas H. Cormen, Chales E. Leiserson (2009), 《算法导论第三版》。
简而言之,我们可以说算法就是用来解决一个特定任务的一系列步骤(是的,不止计算机在使用算法,人类也同样如此)。目前,一个有效的算法应该含有三个重要特性:
log10100 相当于问"将多少个10相乘的结果为100",答案当然是2个了 因此log10100=2,即对数运算是幂运算的逆运算
left | right |
---|---|
23 = 8 | log28 = 3 |
24 = 16 | log216 = 4 |
25 = 32 | log232 = 5 |
以二分查找为例,使用它可节省多少时间呢?简单查找逐个地检查数字,如果列表包含100个数字,最多需要猜100次。
换而言之最多需要猜测的次数与列表长度相同,这被称为线性时间(linear time),而二分查找则不同,如果列表包含100个元素
最多需要7次,如果列表包含40亿个数字,最多需猜32次,而分查找的运行时间为对数时间 O(log)
大O表示法是一种特殊的表示法 ,指出了算法的速度有多快。有个屌用啊,实际上,你经常要去复制别人的代码。 在这种情况下,知道这些算法的速度有快有慢
元素 | 简单查找 | 二分查找 |
---|---|---|
100个元素 | 100ms | 7ms |
10000个元素 | 10s | 14ms |
1 000 000 000 个元素 | 11天 | 30ms |
O
表示法指出了算法有多快,例如列表包含n
个元素,简单查找需要检查每个元素,因此需要执行n
次操作
使用大O
表示法这个运行时间为O(n)
,二分查找需要执行logn次操作,使用大O
表示为O(log n)
由数据元素之间的关系在计算机中有两种不同的表示方法——顺序表示和非顺序表示,从则导出两种储存方式,顺序储存结构和链式储存结构
数据的逻辑结构和物理结构是密不可分的两个方面,一个算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采用的存储结构
是对特定问题求解方法(步骤)的一种描述,是指令的有限序列,其中每一条指令表示一个或多个操作。
算法具有以下五个特性
算法和程序是两个不同的概念
一个计算机程序是对一个算法使用某种程序设计语言的具体实现。算法必须可终止意味着不是所有的计算机程序都是算法。
评价一个好的算法有以下几个标准
效率与存储量需求: 效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间,一般地,这两者与问题的规模有关
算法中基本操作重复执行的次数是问题规模n的某个函数,其时间量度记作T(n)=O(f(n)),称作算法的渐近时间复杂度(Asymptotic Time complexity),简称时间复杂度
是指算法编写成程序后,在计算机中运行时所需存储空间大小的度量,记作:S(n)=O(f(n)),其中n为问题规模
idea
如果大家发现有什么不对的地方,可以发起一个issue或者pull request,我会及时纠正
补充:发起pull request的commit message请参考文章Commit message 和 Change log 编写指南
感谢以下朋友的issue或pull request:
MIT